Cyber-physical collectives (CPCs) are systems consisting of groups of situated interactive computational devices. Their emergence is fostered by recent techno-scientific trends like the Internet of Things (IoT), cyber-physical systems (CPSs), pervasive computing, and swarm robotics. Such systems feature networks of devices that are capable of computation and communication with other devices, as well as sensing, actuation, and physical interaction with their environment. This distributed sensing, processing, and action enables them to address situated problems and provide environment-wide services through their collective intelligence (CI) in a wide range of domains including smart homes, buildings, factories, cities, forests, oceans, and so on. However, the inherent complexity of such systems in terms of heterogeneity, scale, non-linear interaction, and emergent behaviour calls for scientific and engineering ideas, methods, and tools (cf. Wirsing et al. (2023); Dorigo et al. (2021); Brambilla et al. (2013); Casadei (2023a,b)). This research topic gathers contributions related to understanding and engineering cyber-physical collectives.
This article is an editorial overview of the Understanding and Engineering Cyber-physical Collectives