
Evolutionary Autonomous Networks

Paul Harvey∗, Alexandru Tatar, Pierre Imai, Leon Wong
and Laurent Bringuier

Rakuten Mobile Innovation Studio, Japan
E-mail: paul.harvey@rakuten.com; alexandru.tatar@rakuten.com;
pierre.imai@rakuten.com; leon.wong@rakuten.com;
laurent.bringuier@rakuten.com
∗Corresponding Author

Received 30 September 2020; Accepted 17 March 2021;
Publication 02 June 2021

Abstract

The communication networks of today can greatly benefit from autonomous
operation and adaptation, not only due to the implicit cost savings, but also
because autonomy will enable functionalities that are infeasible today. Across
industry, academia and standardisation bodies there has been an increased
interest in achieving the autonomous goal, but a path on how to attain this
goal is still unclear.

In this paper we present our vision for the future of autonomous net-
working. We introduce the concepts and technological means to achieve
autonomy and propose an architecture which emerges directly through the
application of these concepts, highlighting opportunities and challenges for
standardisation. We argue that only a holistic architecture based on hierar-
chies of hybrid learning, functional composition, and online experimental
evaluation is expressive and capable enough to realise true autonomy within
communication networks.

Keywords: Autonomous networks, closed loop, computer networks, archi-
tecture, evolution, online experimentation.

Journal of ICT Standardization, Vol. 9 2, 201–228. River Publishers
doi: 10.13052/jicts2245-800X.927
This is an Open Access publication. © 2021 the Author(s). All rights reserved.



202 P. Harvey et al.

1 Introduction

The importance and impact of networking and communication systems on
our everyday lives is enormous. Almost every minute of our waking day is
somehow influenced (or controlled) by our phones and smart devices [1].
This influence is expected to grow dramatically in the near future due to the
proliferation of automotive [2], wearable [3], and other emerging IoT-related
applications [4] which are set to permeate every aspect of our existence. This
substantial transformation of human society relies on ever-more advanced
communication networks to enable the near-instant transportation of massive
amounts of data from the billions of connected devices [5–7].

One of the most challenging research directions in communications net-
works is to build autonomous networks, i.e., networks that can run with little
or no human involvement. This paradigm, which triggered much interest from
academia, industry and standardization bodies, will allow networks to better
operate in today’s dynamic environment including, but not limited to, the
abilities to self-operate, self-heal, and self-optimise [8].

The purpose of this paper is to present our own vision for the autonomous
network of the future, one based on evolutionary computing combined
with online trail-and-error experimentation to achieve guided emergent
behaviour. Here, guidance is provided by technologies, such as ontology,
reducing direct human involvement. By adopting this approach, we seek to
address the primary challenge of improving the networks’ ability to cope
with uncertainty, a strong limitation of current approaches to autonomous
networking that are predominantly use-case based.

Our approach operates at a higher level of abstraction compared to
traditional management and network orchestration (MANO) functionality
or individual use cases; we describe a system that is responsible for the
management and orchestration of the MANO itself or use cases, reducing (or
replacing) the role of human in these situations. We describe the principles
that guide our pursuit of a (semi) autonomous network in Section 2 as well
as an architecture based on these principles in Section 3. Throughout the
discussion, we highlight necessary standardisation activities that will require
industry-wide consensus.

2 Principles of Evolutionary Autonomy for Networks

An autonomous network cannot come into existence in a deus-ex-
machina approach, but instead will have to gradually evolve from existing



Evolutionary Autonomous Networks 203

technologies. Having motivated why autonomous networks are necessary, we
now introduce how academic research will enable fully autonomous networks
in the future, and partially today.

2.1 Guiding Principles of an Autonomous Network

Autonomous networks are not a new idea of the telecommunications industry.
The topic has been investigated in networking research for decades, led
to several independent large research initiatives [8–11], and includes fields
far beyond networking, such as Cybernetics [12]. Clark et.al’s knowledge
plane for the Internet [13] is a seminal work in the field which defines the
concepts of edge involvement, global perspective, compositional structure,
unified approach, and cognitive framework.

Based on these concepts, existing efforts, research, and our previous
work [14, 15], we derive the following five principles we deem necessary
for achieving true autonomy:

1. Holistic approach: Autonomous networks require comprehensive
access to information about the network (within the domain it operates
in). We extend this requirement to encompass access to all network
functionality, based on a decentralized network architecture, that could
benefit from autonomous control (e.g. network components), as well as
all control, optimization, and adaption functionality deployed therein.

2. Abstraction and Genericity: Autonomous networks require the net-
work and all control loops that co-ordinate its operation to be abstracted
by interfaces or composed of functional building blocks. We extend this
to encompass the interaction between different modules (Section 3.4.1)
in the network.

3. Hybrid Intelligent System: Autonomous networks require the ability
to make informed decisions. As these decisions become more compli-
cated – such as those performed by highly-skilled engineers – cognition
becomes a pre-requisite. To take steps towards achieving this cognition,
a combination of symbolic (structured knowledge and relationships) and
connectionist (artificial neural networks) [16] approaches will be used,
as opposed to any single technology alone.

4. Functional composition: Autonomous networks require a self-
reflective design and the ability to adapt and improve their performance
based on previous network operation and behaviour. Functional com-
position – the online construction of network components based on



204 P. Harvey et al.

available building blocks – enables a system to be more adaptive to new
situations and to more easily integrate new technology.

5. Experimental Evaluation: Autonomous networks require online exper-
imentation to evaluate the potential of new solutions or configurations
in the operational environment, as modern communication networks are
too complex for theoretical or simulation-based reasoning [17].

Based on the above, the need for standardisation is easily identified:
standardised data models to facilitate holistic (i.e., domain agnostic) infor-
mation sharing, clear specification and description languages to facilitate
interaction among functional building blocks, shared ontologies for use by
intelligent decision making, clear taxonomies of use cases to facilitate clear
functional decomposition, as well as descriptions of simulations and network
components to facilitate experimentation and canary testing. We thus believe
there is a need for consensus from the community to achieve interoperable
autonomous networks. A view shared by the recent formation of the ITU
pre-standardisation focus group on autonomous networks.1

In the remainder of this section, we introduce several technologies that
will enable us to realise these principles, along with a brief overview of how
we intend to utilise them in our framework design, detailed in Section 3.

2.2 The Role of Intent

Many efforts have devoted a great deal of attention to the specification and
handling of intent in guiding the purpose and operation of various aspects of
the network [18–21]. Here, intent is defined by the IETF [22] as an abstract
high-level policy used to operate the network:

at a level of abstraction that is much higher than that of
typical configuration parameters, for example, “optimise my

network for energy efficiency”.

The translation of such an abstract, high-level policy into a concrete low-
level configuration, heuristic, or program that can be executed is not possible
without additional knowledge. For example, through a pre-configured map-
ping of high-level policies to low level actions an automated agent is told
what actions to take to optimize an objective.

1https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx

https://www.itu.int/en/ITU-T/focusgroups/an/Pages/default.aspx


Evolutionary Autonomous Networks 205

Alternatively, optimisation techniques (such as reinforcement learning
and genetic algorithms) can be used to tackle the above. These techniques
usually depend on a fitness or reward function, which provides a measure of
the suitability of a proposed solution. In other words, these approaches judge
how well the intent is realized by a potential solution and use it to guide their
incremental search for a better solution.

Abstractly, these two approaches can be compared as top-down vs.
bottom-up. Given that an autonomous agent is expected to come up with
a solution on its own without being explicitly told the mapping necessary
to achieve its goal, we embrace a search-based bottom-up approach as it
naturally reflects the concept of adaptation by design.

In our system, intent is therefore expressed as a combination of utility
function and boundary conditions that constrain or guide the search pro-
cess in achieving the overall policy. This approach enables dynamic and
‘autonomous’ optimisation of the employed heuristics to match the intent.

Sections 3.5 and 3.6 discuss how the above is realised in practise through
the composition of software modules into controllers, which are responsible
for some domain of operation in the network. Hardware composition is
currently beyond the scope of this work.

2.3 The Control Loop

All manifestations of autonomy closely resemble the feedback loop [12],
also known as the autonomic control loop [22, 23] (Figure 1) or MAPE-K

 
Figure 1 Autonomic control loop [23].



206 P. Harvey et al.

loop [25]. The collect/sense stage gathers and aggregates sensor data or
other information from which the analyse stage derives an understanding
of the current system and environment state. Combining this state and the
predicted outcome of potential actions enables decisions of how to act in
the decide stage, which are then applied during the act stage. These stages
may execute independently, as in the OODA loop [26]. Given the complexity
of the envisioned autonomous network, a single control loop is likely to be
insufficient, hence we propose a hierarchy of control loops in Section 2.4.

2.4 The Control Hierarchy

Biological systems hierarchically control the actions of their subordinate
entities. For example, brain functions in the frontal cortex make higher level
decisions to run away from a threat but cannot implement them without the
help of the cerebellum, which translates “run towards the door” into actions to
be performed by the legs. The cerebellum in turn does not control the actions
performed to counteract sudden events which need immediate actions. The
latter is the domain of reflexes, which are hardcoded and able to respond
faster than the cerebellum or the even-slower frontal cortex ever could.

The rationale for this split is that higher-level functionality is more costly
and takes longer. Offloading these functions to less complex parts of the
brain increases reaction speed and frees more advanced areas to handle more
challenging tasks. The same challenges led the robotics field to adopt hier-
archical layered architectures [27], as well as military and (some) corporate
structure to make long-term strategic decisions at a higher rank than tactical
or short-term ones.

Our vision for an autonomous network reflects this concept by providing
multiple control loops in a hierarchical structure. We intend to model the
process of how the cerebellum directs the actions of a leg, which can be
overridden when needed by a reflex, within our network: for example, a
higher-level controller assigns weights per data centre (DC), which are used
to distribute application instances among machines in that DC.

In our design, however, the hierarchy is not limited to optimizing
operations. The structure and composition of the underlying control loops
themselves can be modified and improved by higher-ranked control loops.
Furthermore, we do not employ a single, linear order of layers, but instead
use a directed graph. In our approach, several subordinate loops can be
controlled by one or multiple higher-ranking loops, responsible for different
optimization aspects as described in Section 3.3.



Evolutionary Autonomous Networks 207

2.5 Functional Composition

Modular designs that allow run time construction of functionality from func-
tional building blocks have a long history in a large variety of computing
systems [28–30] or networks [31–33]. Of note are the larger ANA [34] and
4WARD [35] projects where the framework could control runtime rebinding
of communication channels between functional blocks [36].

By decomposing the logic currently being used in the management and
operation of the network to functional (Lego) building blocks, our approach
would seek to assemble and reassemble these blocks into closed loop con-
trollers at runtime (see Section 3.5.1), reducing human involvement. In this
way, the interaction with the network becomes decoupled from the autonomy
that drives it, and the specific technologies used. Several existing standardised
approaches support the description of such building blocks [37–40].

2.6 Artificial Cognition

Research into artificial thinking and reasoning is spread across many different
areas of science and can be split into two distinct approaches: development
of systems that think rationally or that think like a human [41]. This has led
to cognitive architectures [42, 43].

Artificial Neural Networks (ANN) [41] are the main connectionist [44]
approach. Despite limited pattern classification and function approximation
capabilities [45], Fukushima’s Cognitron [46] inspired convolutional neural
networks and consequently the advent of Deep Learning [47]. Advances
in computational power and data have enabled huge performance increases
in several beat? application areas for ANNs, enabling Deep Reinforcement
Learning to best humans at board (go, chess) and video games [48].

However, despite impressive results in certain areas, a general approach
to new (never before seen) situations is still limited at best. Many researchers
now acknowledge the limitations of Deep Learning approaches and explore
potential solutions to advance the state of the art. For example, meta-
learning [49] explores how to overcome inductive bias in learning algorithms
through automatic optimization. Of particular interest to us is the idea of
using a hierarchy of learning systems, where each layer learns how to improve
the performance of the underlying layer through, for example, Genetic Pro-
gramming [50]. This concept is applied recursively throughout the hierarchy,
from top to bottom.

Ultimately, artificial intelligence is still extremely far from matching the
cognitive abilities of a human being, and creating a human-like artificial



208 P. Harvey et al.

intelligence can be considered the holy grail of AI research. With this in mind,
our framework is designed to be modular and decoupled to be as accepting as
possible for future AI technology.

Even partial autonomy will allow us to reduce costs as well as
increase the capabilities of the network and is therefore worth pursu-
ing. We believe that the current state of AI research enables the cre-
ation of a semi-autonomous network through a combination of seman-
tic/symbolic/connectionist/emergent approaches, as appropriate for the appli-
cation context. In other words, no single AI/ML technology is sufficient to
address all concerns of an autonomous network, requiring a “right tool for
the right job” mentality: If context and logical relationships can reasonably
be provided by an engineer, such as the relationship between analogue signals
and temperate in a sensor, this can be leveraged by means of symbolic
reasoning. This is similar to the concept of an expert system. Whenever this
is infeasible, due to the amount of data, variation, or lack of knowledge about
relationships, such as how exactly an intrusion attempt would manifest itself
in the network, then we will focus on connectionist approaches – data-driven
learning.

2.7 Metaheuristic Optimisation

Many, if not most, optimization problems encountered in computer networks
can be expressed by means of a utility function. A utility function provides a
measure of optimality for a potential solution, state, or configuration setting.

For difficult (high-dimensional, non-convex) or unknown search spaces,
which cannot exhaustively be explored, common heuristics, such as hill-
climbing [41] or simulated annealing [41], are not applicable. In such cases,
the introduction of randomicity both helps to traverse the potentially vast
search space of the network and also deals with uncertainty in cases where the
underlying relationships between actions and outcomes are either unknown or
difficult to reason about. Stochastic meta-heuristic approaches offer a flexible
way of finding a sufficiently good, but not necessarily optimal, solution.
Many examples of such approaches are based on, or inspired by, biological
processes: genetics [41], evolution [51], ant colony behaviour [52], or biased
random exploration [53].

As all these approaches – in the context of our approach described
in Section 3 – share common inputs (e.g., current state, (partial) history
information, utility, previous configurations) and outputs (e.g., new state
or sets of states to explore) modularization and use as building blocks for



Evolutionary Autonomous Networks 209

functional composition is straight-forward. By layering these approaches in
inter dependent control loops, meta-meta-heuristic optimization is possible
and is applied in our framework.

From a standardisation perspective, we consider several challenges:
designing an architecture with a common abstraction layer, specifying the
interface points with the underlying network, deciding on the state representa-
tion (and input/outputs) and in building appropriate protocols for inter-control
loop communication. Given the wide variety of network contexts in which
these control loops will operate, a one-size-fits-all approach is infeasible and
further exploration will be required to find the appropriate technology.

2.8 The Case for Experimental Online Evolution

In 1997 the Internet was already too complicated to feasibly simulate [17]
and the same claim can easily be extended to today’s massive telecommuni-
cation networks. Even if the system itself was not complex, environmental
interaction can easily make it so [54], especially considering that the traffic
carried on these networks is predominantly human-initiated and -controlled.

Sentient beings overcome similar problems through online experimen-
tation and continuous learning [55]. Similar approaches have discovered
the best networking protocol to deploy in the network [56], the best radio
parameters [57], found the best bit-rate for wireless communication [58], or
reinvented modern technology [59].

The trade-off between exploration and exploitation, is a major issue for
online search heuristics [41]: exploiting only the current knowledge can max-
imize immediate payoffs but can also penalize the agent for failing to explore
even better options. The multi-armed bandit problem has been a particular
focus of study, which led to strategies such as ε-greedy, Bayesian approaches,
or approximate methods. In general, however, the best strategy is highly
dependent on the scenario and a general solution for the full reinforcement
learning case has yet to be found [60].

One additional caveat is the possibly exponential growth of the search
space that needs to be explored experimentally if optimization is to be
performed on multiple interdependent layers. The optimal strategy to this
problem again depends on the peculiarities of the problem set.

Our framework design employs online experimentation of potentially
better solutions for optimization problems (see Section 3.6). Note that the
experimentation process is also subject to online optimisation. The use of
online experimentation enables positive and negative evolutionary-driven



210 P. Harvey et al.

exploration to be addressed while at the same time reducing the human in
the loop. The precise mechanism to drive this process is a topic of research.

3 A Framework For Evolutionary Autonomous Networks

Guided by the concepts and technologies above, we now present our vision
for a future autonomous management of a telecommunication network.
We describe how the key elements of our approach are embodied in our
framework. To provide a clear narrative, engineering-focused topics are
deferred.

3.1 Module: The Building Block of Functional Composition

The functional building block is a key element of our approach to auton-
omy and realized within our framework as a module, Figure 2.A module
consists of a software element and corresponding composition information.
As discussed above, in this work we focus on software operation. This
structure enables us to compose controllers (described in Section 3.2) out
of compatible modules using the process described in Section 3.5.

The software section represents the operational logic of a module and
consists of three parts: code, parameters, and API. Code represents the logical
operation of the module and is expressed as software. The scope, size, and
choice of software technology is defined by the designer and may be of
arbitrary size. Parameters are used to initialise and configure the operation
of the code, for example, how long to wait before a timeout. Finally, there is
a well-defined API which enables this code module to be interacted with.

The API is identified by a unique ID together with an arbitrary number of
optional tags to specify the module’s functionality. Examples include lossless
or lossy for an audio codec API. Importantly, the API ID combined with the
optional tags constitute a “contract” for composability and interoperability.

 
Figure 2 A module.



Evolutionary Autonomous Networks 211

Modules can depend on APIs provided by other modules, where the same
API can be provided by multiple different modules – in other words the
same interface with different implementation behind it. Equally, differently
parametrised instances of the same module can be utilised concurrently. In
this way, inter-module dependencies are implicitly inferred via the APIs (and
tags) used. We currently assume that software modules are user-defined: soft-
ware generated modules can be accepted by our approach, but the generation
of such modules is left for later discussion. To help clarify the role of the
module, examples of potential modules may include, aggregation functions,
DNS configuration interfaces, gathering Kubernetes statistics, an entire deep
neural network (DNN) model, a single layer of a DNN model, etc. By
analogy, just as a Java object is a container of logic, activity, or hardware
interaction, so too is a module. This flexibility is intended so that:

• The burden of adopting future technologies is reduced
• Controllers (Section 3.2) can be created of arbitrary size and scope,

where this scope can be that of a network function, network control
function, or any other purpose, including the higher-level meta-evolution
and self-reflection discussed in Section 3.3.

From this perspective, the ‘code’ of a module is not as important as the
description of the module itself, as well as the interfaces and standardisation
of how such modules are composed and interact.

Given the above, modules can now be programmatically (or automati-
cally) composed together to create controllers, discussed below.

3.2 Controller: An Instantiation of the Control Loop

The control loop (Figure 1) is manifested in our framework as a controller,
Figure 3. A controller is responsible for the control, operation, or optimisation
of some task or domain within our network. Like modules, the scope is user-
defined.

The four control loop phases (sense, analyse, decide, act) are present
within a controller. Each controller phase operates on an independent time
scale from the others. For example, sense can be a continuous process,
whereas analyse is likely to operate only occasionally to interpret collected
data. Decisions are either periodic or triggered by changes in the environ-
ment, and actions are in response to decisions. Each controller phase is a
composition of modules and can be represented as a directed graph of nodes,
where each node is one module instance. The root of this graph is the sink:



212 P. Harvey et al.

Figure 3 A generic controller architecture.

an abstract module which represents the required inputs of the next phase in
the control loop to ensure that all necessary data is present. The next phase
contains a corresponding source module, which provides access to the output
of the previous phase. A detailed description of what exactly is required
for each phase is provided by the controller specification (Section 3.4.3), in
conjunction with additional requirements derived from the modules present
within this next phase.

The vertices of this graph represent the dependencies between the
modules. As different module combinations are possible, and different mod-
ules possess different dependencies, arbitrarily complex graphs (and hence
controllers) are possible. It is the manipulation by means of creation, re-
arrangement, replacement, and configuration changes of module composi-
tions that enables our framework to adapt to both new and evolving situations
(see Section 3.5).

N.B.: our framework currently requires a user to provide a metric to
measure the fitness of a controller by means of a utility function. Like
modules, we do not prohibit auto-generation of utility functions but defer
this to future work.

Finally, all controller phases share access to persistent knowledge through
a knowledge base. This is necessary to understand previous choices and their
consequences, changing system state, and to ease synchronisation across dis-
tinct update periods. The latter points being necessary to be able to checkpoint
and restart controllers in the face of inter-node migration and error. The
exact knowledge to be kept is dependent on the specific controller but can
be utilized by separate controllers of the same or different types if applicable.



Evolutionary Autonomous Networks 213

This related to the notion of holistic information, where data is used beyond
the domain for which it is collected. The knowledge store is an eventually
consistent distributed data store, which we will also discuss separately.

3.3 Controller Hierarchy: A Layered Approach to Control

Our approach uses flexible, runtime-defined hierarchies of controllers, which
consist of operation controllers (OC) and evolution controllers (EC).

OCs either directly control network elements or supervise other operation
controllers. Examples include heuristics for network load balancing, resource
distribution, job scheduling logic, or anomaly detection and mitigation
technologies.

ECs optimize and adapt the composition and configuration of other
controllers to achieve the best possible utility under the current operation
conditions. This is an exploratory task and is referred to as evolution (see
Section 3.5). ECs can be under the supervision of other (meta) ECs and thus
evolve themselves, as explained below.

Figure 4 separates controllers into conceptual layers by the roles they
perform. Practically, all controllers are arranged in a single hierarchy, where
all leaf nodes are OCs.

OCs may be controlled by distinct higher-level OCs which supervise and
direct the operation of subordinate OCs. For example, leaf OCs may optimise
some activity in data centres, but the bounds within which they operate may

Figure 4 Example controller hierarchy split by layer.



214 P. Harvey et al.

be defined by a regional OC, above which a global OC may be deployed. OCs
cannot influence the controller graph or the evolution process.

Conversely, ECs decide when and how to evolve the controllers they
are responsible for. Unlike controller module compositions, each EC in
the hierarchy graph may define its own dependencies: each EC defines the
specification and number of controllers in the layer directly below itself,
either via specification (Section 3.4.3) or programmatically at runtime. Thus,
ECs may apply one or more independently evolved OCs locally, regionally, or
globally at their discretion, compare the results, and decide which approach
is most efficient, based on their utility function.

The OCs hierarchy enables the separation of local reactive decisions
from considered global decisions. For example, a single base station con-
troller can quickly adjust its tilt based on the number and conditions of
connected devices, however, the global controller can get feedback from
many local controllers and provide more general policy decisions at a larger
temporal and geographical granularity. Thus, our framework offers the same
underlying concepts that centralized and distributed SON [61] provides,
such as the deployment of agents in each cell to co-ordinate and minimize
interference.

Whether separation into multiple OCs is sensible or not depends on the
use case and application environment. Hence, we allow ECs to decide their
sub-graphs as it enables them to autonomously try out different operational
separations of control and choose the right one for the current situation.

As well as OCs, ECs may control other ECs in a role we call a meta
evolution controller (MEC). Having a hierarchical ordering of ECs enables
us to apply different evolution approaches depending on the use-case and
operational environment. For example, the strategy for in-data centre resource
allocation may differ from the regional strategy (different time scale, explicit
allocation to machines vs weights per application group).

The mapping of MEC to EC follows a similar logic. As the ideal number
and role of ECs depends on the use case and application environment, it is
the prerogative of the MEC to decide (i.e., evolve) the composition of the
hierarchy below itself.

Figure 4 illustrates the potential of hierarchical control separation via two
use cases: traffic shaping and antenna tilt optimization. For traffic shaping,
a global OC decides the high-level weight allocations per location, and
two local OCs shape the traffic, obeying the global weights. These OCs
are independently evolved by their corresponding local or global EC. For
tilt, all three local OCs are evolved by one EC. All ECs are evolved by



Evolutionary Autonomous Networks 215

a corresponding MEC, which in turn are evolved by the master evolution
controller (Section 3.5.2) This is one potential configuration amongst many.

Initially, it is the engineers’ decision to decide whether an EC may try
out different hierarchies of OCs and/or ECs, or whether the hierarchy should
remain static and evolution should be limited to controller composition. The
correct degree of freedom given to the system is a topic of future work.

3.4 Description Language: Meta-Data for Symbolic Reasoning,
Controller Composition, and Use Case Specification

The description language steers the functional composition and derivation
of meaning (symbolic reasoning) from sensor data. It provides a normal-
isation layer that enables our system to programmatically understand and
reason about the modules and sensors provided. Additionally, it allows us to
specify constraints for controllers, controller hierarchy branches, and utility
functions, and thus to add new use case-specific controller (hierarchies).

3.4.1 Module description
Our framework composes controllers from modules by specifying module
capabilities (e.g., sensing, compression, aggregation, configuration), con-
figurable parameters, and interfaces using a description language. Such
specification may be achieved in many ways [62–64]. Given space limita-
tions, we defer description of our specific approach. Having each module
provide a standard description enables equivalent but different modules to be
interchanged programmatically.

Irrespective of the technology or description used, the standardisation
of the specification of modules and their capabilities is a clear necessity to
achieve interoperable autonomous networking.

3.4.2 Sensor description
There are two types of description for sensors. The first concerns the symbolic
description of the sensors (e.g., thermistor, packet probe, energy meter), as
well as the data types that they produce (e.g., degrees centigrade, packet loss,
joules). Our framework requires the developer to provide this information via
a specification. To assist, our framework will support a taxonomy of sensor
types and data. Existing work in sensor networks [65] and more recently
IoT [66] have made efforts to classify both sensor types and data by problem
domain to better exploit the right tool for the right job. Our framework
will do the same; just as modules are symbolically described, so too must



216 P. Harvey et al.

sensors within the context of our taxonomy. By doing so (1) sensors from one
domain can be reused in another, (2) equivalent but different sensors can be
interchanged, (3) classification can guide the process of “good” module com-
positions within a controller, where sensor access is encapsulated by a module
(4) classification can help automate the process of sensor data aggregation
and later reuse of this aggregation between similar sensors classes.

The second description type concerns the inference of meaning from the
raw sensor data. In this case, the use of taxonomies combined with ontologies
will enable these relationships to be inferred [67].

3.4.3 Controller description
The constraints that guide which controllers are required to be present in the
framework for a particular use case are also specified by a description lan-
guage. As explained in Section 3.2, the conceptual structure of the controller
is constant and always consists of the sense, analyse, decide, and act phases.
The connections between the phases are provided through the corresponding
source and sink modules of each stage. Figure 4 shows such constraints
as applied to a load balancing use case, in which one evolution controller
is responsible for the evolution of two distinct load balancing operation
controllers. Note that only the required outputs are specified explicitly. The
required inputs are derived directly from the requirements of a composition
that provides the needed outputs. These input requirements can also lead to
additional output requirements for preceding phases.

The utility metric used to evaluate all controllers under an evolution
controller can also be defined either in software (via a module provided
for this purpose) or directly within the controller specification by means
of a simple mathematical syntax. In accordance with the holistic approach
(see Section 2.1) we take, any available information can be used for the
utility estimation purpose, be it sensor data, module output provided by other
controllers, or statistics gathered directly from the network.

3.5 Composition & Online Evolution

One of the key strengths of our framework is the ability to adapt and
improve the operation of controlled network entities, but also to self-evolve.
Specifically, to adapt and improve its own functionality. This is achieved by
manipulation of controller module compositions and hierarchy topologies.



Evolutionary Autonomous Networks 217

Figure 5 Composition #2.

Figure 6 Composition #1.

Figure 7 Search domain.



218 P. Harvey et al.

3.5.1 Controller evolution
As previously described, controllers are broken into four phases, where each
phase is a composition of modules.

The set of all potential valid compositions (of module instances and
parameter configurations) defines the search space for the evolution process.
The composition process is illustrated in Figures 5–7. These figures show a
number of modules, where the dotted lines represent all potential composable
configurations of their APIs – the search domain. The module names are
indicative of the logic contained within them, such as analysis, prediction,
classification, or utility function. The logic of a module is irrelevant to the
structural composition of the controller: only a module’s API is relevant at
this point (Section 3.1).

The search domain is represented by all possible paths from source to
sink. Figures 5–7 show possible valid configurations. The evolution process
can utilize any valid solutions within the search domain to instantiate a
controller. How to search is discussed in Section 3.5.3. Hierarchy Evolution.

ECs are allowed to define how the sub-graph of controllers below them is
composed at runtime.

The root controller is known as the master evolution controller. It is
instantiated first and notifies the framework regarding the composition of the
sub-graph below it, which is then instantiated recursively for each nested sub-
graph. When an EC decides to change the composition of the sub-graph it
manages, the above process is applied to that sub-graph alone.

The set of all potentially valid controller graphs (like the module graphs)
constitutes the search space to be traversed by the evolution process. Given
the large potential search space, iterative search is used. Specifically, we
instantiate a limited number of controllers, evaluate their performance, and
refine our search process based on the gained knowledge. Similarly, we
iteratively generate one controller hierarchy and let it operate unmodified
until an EC decides to change the sub-hierarchy. How to search is discussed
in Section 3.5.3.

3.5.2 Traversing the compositional search space
Composition of controllers and the controller hierarchy is an iterative process.
The search space that needs to be explored is complex and high-dimensional,
where the number of dimensions is not static. For controller composition,
every connection between module instances and configuration parameter con-
stitutes one dimension. If a different module is chosen, the number and types



Evolutionary Autonomous Networks 219

of parameters and dependencies changes. Likewise, for controller hierarchies,
each EC can define the controllers of its own sub-graph and hence the number
of dimensions.

Building on our previous work of discovering optimal solutions in such
complex environments [15], we will enhance and apply the techniques devel-
oped to both controller composition and hierarchy evolution. The former case
is straight-forward, but the latter case, requires future research.

3.6 Online Experimentation

With the ability to evolve controllers programmatically, our framework can
now automatically generate new controllers. However, to understand their
utility or fitness as applied to some domain of control we require online
experimentation.

Within our framework, online trial-and-error experimentation is the
responsibility of the experimentation manager. As described previously, we
adopt a multi-layered approach to experimentation: First, new controllers
are sanity checked to detect logical mistakes, such as a controller using a
light sensor module where no such sensor exists, even though the module
is available. The use of taxonomies and ontologies (common sense) can be
used to assist in this. Next, candidate controllers are tested in simulation to
estimate their utility. While not perfect, simulation tools, such as ns-3 [68],
or Naos [69], can serve as indicators of potential success or failure. Finally,
network trials see the experimentation manager responsible for limiting the
(physical and temporal) scope of experiments, with gradual expansion based
on a particular controller’s measured (or estimated) utility.

Additionally, the experiment manager acts as coordinator for different
concurrent controller experimentations as requested by multiple ECs or
MECs. Intuitively, not all experiments can be run concurrently as con-
flicts and false utility may be observed due to experiments interfering. A
telecommunications network is a large interconnected system meaning that
interference is inevitable, however, the experiment manager seeks to limit
this ensuring that experiments are fair, meaningful, and representative of the
actual operation environment.

An experiment consists of the controller to test, its parameter config-
urations, utility functions, current experimental scope, and results. These
results are used to determine if the candidate controller should replace an
existing controller. Based on the provided information, potential conflicts in
experimentation can be inferred.



220 P. Harvey et al.

4 Conclusion

In this paper we present our vision for reaching true autonomy in the com-
munication networks of the future and propose an approach towards realizing
this goal. Our vision is based on several core principles and key technolo-
gies, which together outline the road towards an autonomous, self-evolving
architecture. This architecture will enable autonomy, will be flexible enough
to encompass arbitrary future technologies, and will be concise enough to be
deployable in actual networks. We believe that our focus on a holistic and
evolution-based approach, which can on its own adapt to, and optimize for,
any use case, is superior to both one-size-fits-all efforts and hand-crafted use
case-specific designs.

Our future work will consist of implementing this framework not only for
the purpose of experimentation, but for production deployment with the aim
of enriching the first fully-deployed virtualized telecommunication network.
As we learned through our efforts on autonomous network stack evolution,
we expect the road towards this goal to be full of rocks and pitfalls, but by
leveraging the experience we gained to overcome these issues, we aim to
achieve the world’s first truly autonomous network.

References

[1] M. Harris, The End Of Absence: Reclaiming What We’ve Lost in a World
of Constant Connection. Harper Perennial, 2014.

[2] R. Stahlmann, A. Festag, A. Tomatis, I. Radusch, and F. Fischer, “Start-
ing European field tests for Car-2-X communication: the DRIVE C2X
framework,” in 18th ITS World Congr. and Exhibition, 2011, p. 12.

[3] J. V Jacobs et al., “Employee acceptance of wearable technology in the
workplace,” Appl. Ergon., vol. 78, pp. 148–156, 2019.

[4] M. Jalasri and L. Lakshmanan, “A Survey: Integration of IoT and Fog
Computing,” in 2018 2nd Int. Conf. Green Comput. and Internet of
Things (ICGCIoT), 2018, pp. 235–239.

[5] G. Davis, “2020: Life with 50 billion connected devices,” in 2018 IEEE
Int. Conf. Consum. Electron. (ICCE), 2018, p. 1.

[6] 3GPP, “Public Warning System (PWS) requirements,” 2015.
[7] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “5G-enabled

tactile internet,” IEEE J. Sel. Areas Commu., vol. 34, no. 3, pp. 460–473,
2016.



Evolutionary Autonomous Networks 221

[8] O. Babaoglu et al., “The Self-Star Vision,” Springer, Berlin, Heidelberg,
2005, pp. 1–20.

[9] M. Smirnov, “Autonomic Communication—Research Agenda for a
new Communication Paradigm. Company whitepaper,” Fraunhofer Inst.
Open Commu. Syst., Berlin, Ger., 2004.

[10] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing
era,” IBM Syst. J., vol. 42, no. 1, pp. 5–18, 2003.

[11] P. Demestichas, V. Stavroulaki, D. Boscovic, A. Lee, and J. Strassner,
“m@ANGEL: autonomic management platform for seamless cognitive
connectivity to the mobile internet,” Commu. Mag. IEEE, vol. 44, no. 6,
pp. 118–127, Jun. 2006.

[12] N. Wiener, Cybernetics. Technology Press, 1949.
[13] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A

knowledge plane for the internet,” in Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications – SIGCOMM ’03, 2003, p. 3.

[14] P. Imai and C. Tschudin, “Practical online network stack evolution,” in
Proceedings – 2010 4th IEEE International Conference on Self-Adaptive
and Self-Organizing Systems Workshop, SASOW 2010, 2010, pp. 34–41.

[15] P. Imai, “Exploring Online Evolution of Network Stacks,” University of
Basel, Switzerland, 2015.

[16] P. Smolensky, “Connectionist AI, symbolic AI, and the brain,” Artif.
Intell. Rev., vol. 1, no. 2, pp. 95–109, 1987.

[17] V. Paxson and S. Floyd, “Why we don’t know how to simulate the
Internet,” in Proc. the 29th Conf. Winter Simul., 1997, pp. 1037–1044.

[18] 3GPP, “Telecommunications Maangement: Study on Scenarios for
Intent Driven Management Services for Mobile Networks,” 2020.

[19] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, “Intent-Based
Networking - Concepts and Overview,” 2019.

[20] T. Szigeti, D. Zacks, M. Falkner, and S. Arena, Cisco Digital Network
Architecture: Intent-based Networking for the Enterprise. Cisco Press,
2018.

[21] A. Rafiq, M. Afaq, and W.-C. Song, “Intent-based networking with
proactive load distribution in data center using IBN manager and Smart
Path manager,” J. Ambient Intell. Humaniz. Comput., pp. 1–18, 2020.

[22] M. Behringer et al., “RFC 7575: Autonomic Networking: Definitions
and Design Goals,” 2015.

[23] J. Mitola, “Cognitive Radio Architecture Evolution,” Proc. IEEE,
vol. 97, no. 4, pp. 626–641, Apr. 2009.



222 P. Harvey et al.

[24] S. Dobson, E. Bailey, S. Knox, R. Shannon, and A. Quigley, “A first
approach to the closed-form specification and analysis of an autonomic
control system,” in ICECCS ’07: Proc. 12th IEEE Int. Conf. Engineering
Complex Computer Systems, 2007, pp. 229–237.

[25] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer (Long. Beach. Calif)., vol. 36, no. 1, pp. 41–50, 2003.

[26] J. Boyd, G. T. Hammond, and A. U. (U.S.). Press, A Discourse on
Winning and Losing. Air University Press, Curtis E. LeMay Center for
Doctrine Development and Education, 2018.

[27] E. Gat, R. P. Bonnasso, R. Murphy, and A. Press, “On Three-Layer
Architectures,” in Artif. Intell. and Mobile Robots, 1997, pp. 195–210.

[28] D. M. Ritchie, “A Stream Input-Output System,” in AT&T Bell Labora-
tories Technical J., 1984, pp. 311—324.

[29] R. G. Guy et al., “Implementation of the Ficus replicated file system,” in
USENIX Conf. Proc., 1990, vol. 74, pp. 63–71.

[30] P. Harvey, A linguistic approach to concurrent, distributed, and adaptive
programming across heterogeneous platforms. 2015.

[31] N. C. Hutchinson and L. L. Peterson, “The X-Kernel: An Architecture
for Implementing Network Protocols,” IEEE Trans. Softw. Eng., vol. 17,
no. 1, pp. 64–76, 1991.

[32] S. Patarin, S. Patarin, M. Makpangou, M. Makpangou, and S. Pat,
“Pandora: A Flexible Network Monitoring Platform,” in Proc. USENIX
2000 Annu. Tech. Conf., 2000, p. 200.

[33] F. Ogel, S. Patarin, I. Piumarta, and B. Folliot, “C/SPAN: a self-adapting
web proxy cache,” in Autom. Comput. Workshop. 2003. Proc., 2003,
pp. 178–185.

[34] “Autonomic Network Architecture Project.”
[35] “The FP7 4WARD Project.”
[36] M. Harris et al., “Digital Transformation Initative Telecommunications

Industry,” communicate, Jan-2019. [Online]. Available: https://ieeexplo
re.ieee.org/document/8399482/. [Accessed: 05-Apr-2019].

[37] A. Brogi, J. Soldani, and P. Wang, “TOSCA in a Nutshell: Promises
and Perspectives,” in Service-Oriented and Cloud Computing, 2014,
pp. 171–186.

[38] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying Safety
Properties with the TLA+ Proof System,” in Proceedings of the 5th
International Conference on Automated Reasoning, 2010, pp. 142–148.

[39] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2012.

https://ieeexplore.ieee.org/document/8399482/
https://ieeexplore.ieee.org/document/8399482/


Evolutionary Autonomous Networks 223

[40] IETF, “YANG - A Data Modeling Language for the Network Configu-
ration Protocol (NETCONF),” 2010.

[41] S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,
2nd edition,” Prentice-Hall, 2003, pp. 1–5.

[42] J. E. Laird, The Soar Cognitive Architecture. The MIT Press, 2012.
[43] F. E. Ritter, F. Tehranchi, and J. D. Oury, “ACT-R: A cognitive architec-

ture for modeling cognition,” WIREs Cogn. Sci., vol. 10, no. 3, p. e1488,
2019.

[44] M. Minsky, “Logical versus Analogical or Symbolic versus Connection-
ist or Neat versus Scruffy,” AI Mag., vol. 12, no. 2, pp. 34–51, Apr.
1991.

[45] M. Minsky and S. Papert, “Perceptrons: An essay in computational
geometry,” MIT Press, 1969.

[46] K. Fukushima, “Cognitron: A self-organizing multilayered neural net-
work,” Biol. Cybern., vol. 20, no. 3–4, pp. 121–136, 1975.

[47] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,”
Neural Netw., vol. 61, pp. 85–117, 2015.

[48] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A Survey of Deep Rein-
forcement Learning in Video Games,” arXiv Prepr. arXiv1912.10944,
2019.

[49] C. Lemke, M. Budka, and B. Gabrys, “Metalearning: a survey of trends
and technologies,” Artif. intell. Rev., vol. 44, no. 1, pp. 117–130, 2015.

[50] J. Schmidhuber, “Ultimate cognition à la Gödel,” Cogn. Comput., vol. 1,
no. 2, pp. 177–193, 2009.

[51] T. Bäck, Evolutionary Algorithms in Theory and Practice - Evolu-
tion Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, 1996.

[52] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-
heuristic,” in Proc. 1999 Congr. Evolutionary Comput. – CEC99 (Cat.
No. 99TH8406), 1999, vol. 2, pp. 1470–1477.

[53] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” 1998.

[54] H. A. Simon, “The Sciences of the Artificial,” 3rd ed., Cambridge, MA:
MIT Press, 1996, pp. 51–52.

[55] D. Wood, J. S. Bruner, and G. Ross, “The Role of Tutoring in Problem
Solving,” J. Child Psychol. Psychiatry, vol. 17, no. 2, pp. 89–100, 1976.

[56] J. J. Ramos-Munoz, L. Yamamoto, and C. Tschudin, “Serial Experi-
ments Online,” in ACM SIGCOMM Comput. Commu. Review, 2008,
vol. 38, no. 2, pp. 31–42.



224 P. Harvey et al.

[57] G. D. Troxel et al., “Adaptive Dynamic Radio Open-source Intelligent
Team (ADROIT): Cognitively-controlled Collaboration among SDR
Nodes,” in Netw. Techn. for Software Defined Radio Networks, 2006.
SDR ’06.1st IEEE Workshop, 2006, pp. 8–17.

[58] J. C. Bicket, “Bit-rate selection in wireless networks,” Massachusetts
Institute of Technology, 2005.

[59] E. Real, C. Liang, D. R. So, and Q. V Le, “Automl-zero:
Evolving machine learning algorithms from scratch,” arXiv Prepr.
arXiv2003.03384, 2020.

[60] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduc-
tion, 2nd ed,” MIT Pressl, 2017, pp. 19–35.

[61] 3GPP, “36.902: Evolved Universal Terrestrial Radio Access Network
(E-UTRAN); Self-configuring and self-optimizing network (SON) use
cases and solutions,” 2008.

[62] O. Faldik, R. Payne, J. Fitzgerald, and B. Buhnova, “Modelling system
of systems interface contract behaviour,” arXiv Prepr. arXiv1703.07037,
2017.

[63] B. Porter, M. Grieves, R. R. Filho, and D. Leslie, “REx: A Development
Platform and Online Learning Approach for Runtime Emergent Soft-
ware Systems,” 12th USENIX Symp. Oper. Syst. Des. Implement. (OSDI
’16), pp. 333–348, 2016.

[64] M. Harris et al., “Digital Transformation Initative Telecommunications
Industry,” communicate, Jan-2019.

[65] R. Jurdak, C. V. Lopes, and P. Baldi, “A framework for modeling sensor
networks,” in Proc. Building Softw. for Pervasive Comput. Workshop at
OOPSLA, 2004, vol. 4, pp. 1–5.

[66] V. Rozsa et al., “An Application Domain-Based Taxonomy for IoT
Sensors.,” in ISPE te, 2016, pp. 249–258.

[67] M. Eid, R. Liscano, and A. El Saddik, “A novel ontology for sensor net-
works data,” in Proceedings of 2006 IEEE International Conference on
Computational Intelligence for Measurement Systems and Applications,
CIMSA 2006, 2006, pp. 75–79.

[68] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Netw. Sim., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 15–34.

[69] Forsk, “Naos Overview.” 2020.



Evolutionary Autonomous Networks 225

Biographies

Pierre Imai is Head of the Research & Innovation Department at Rakuten
Mobile and has been working for the Rakuten Institute of Technology as
Principal Scientist since 2016. His research and work experience includes the
fields of networking & telecommunications, self-optimizing & autonomous
systems, internet-scale distributed systems, artificial intelligence & machine
learning, and robotics. Before joining Rakuten, he was improving the content
distribution and active network monitoring systems down to network protocol
level at Google, working on future internet and telecommunications research
at NEC Labs Europe, and participated in multiple EU and national research
projects such as ANA and Onelab. He is especially interested in building
systems that can learn and improve themselves, for example, a network stack
that autonomously re-composes and re-configures itself to reach close-to-
optimal performance based on the current state of the network and traffic – as
he did for his PhD, on a research grant from the Swiss National Fund.

Paul Harvey received his doctorate in Computing Science from the Univer-
sity of Glasgow focusing on heterogeneous adaptive systems. He possesses
extensive experience in academia, including multiple international collab-
orations and positions, and is currently bridging academic and industrial



226 P. Harvey et al.

research. He is one of the original founders of the Autonomous Networks
Research & Innovation Lab in Rakuten Mobile Japan and is passionate about
pursing collaborative and open research.

Alexandru Tatar is a researcher at Rakuten. He received an Engineering
Degree from Polytechnic University of Bucharest and a Ph.D. from UPMC
Sorbonne University, France. His work focuses on autonomous networks and
on studying user behaviour in e-commerce.

LeonWong is the Industry Research Collaboration Lead for Rakuten Mobile
Autonomous Networking Research & Innovation Lab. He has over 15 years
experience in Telecommunications and IT, as a Subject Matter Expert in OSS,
Solution Architect and Lead Engineer for international projects. Prior to join-
ing Rakuten Mobile, he was responsible for building GPU High Performance
Computing clusters for Rakuten Technology Division.



Evolutionary Autonomous Networks 227

Laurent Bringuier graduated from Paris-Sud University with a maı̂trise
degree in electrical and computer engineering. Laurent has over 20 years
experience in the telecommunication industry working in a range of com-
panies from small start-up operators to large international vendors. In that
time, he gained experience as a network engineer, OSS IT architect, and
OSS project manager on network and infrastructure resource management.
He transitioned to R&D, working in Rakuten Institute of Technology as a
research project manager on various applied machine learning projects from
inception to conclusion. Now, Laurent is one of the original members of
the Autonomous Networks Research & Innovation Dept in Rakuten Mobile
Japan. Here he is leveraging his pragmatic telco knowledge and experience in
applied research management to contribute to the creation of an autonomous
network.




	Introduction
	Principles of Evolutionary Autonomy for Networks
	Guiding Principles of an Autonomous Network
	The Role of Intent
	The Control Loop
	The Control Hierarchy
	Functional Composition
	Artificial Cognition
	Metaheuristic Optimisation
	The Case for Experimental Online Evolution

	A Framework For Evolutionary Autonomous Networks
	Module: The Building Block of Functional Composition
	Controller: An Instantiation of the Control Loop
	Controller Hierarchy: A Layered Approach to Control
	Description Language: Meta-Data for Symbolic Reasoning, Controller Composition, and Use Case Specification
	Module description
	Sensor description
	Controller description

	Composition & Online Evolution
	Controller evolution
	Traversing the compositional search space

	Online Experimentation

	Conclusion

