Network Digital Twin: Context, Enabling Technologies and Opportunities


The proliferation of emergent network applications (e.g., telesurgery, metaverse) is increasing the difficulty of managing modern communication networks. These applications entail stringent network requirements (e.g., ultra-low deterministic latency), which hinders network operators to manage their resources efficiently.

In this article, we introduce the network digital twin (NDT), a renovated concept of classical network modeling tools whose goal is to build accurate data-driven network models that can operate in real-time. We describe the general architecture of the NDT and argue that modern machine learning (ML) technologies enable building some of its core components. Then, we present a case study that leverages a ML-based NDT for network performance evaluation and apply it to routing optimization in a QoS-aware use case. Lastly, we describe some key open challenges and research opportunities yet to be explored to achieve effective deployment of NDTs in real-world networks.

IEEE Communications Magazine

Arxiv paper can be found here.