Containers are popular for deploying workloads. However, there are limited software-based methods (hardware- based methods are expensive) for obtaining the power consumed by containers to facilitate power-aware container scheduling. This paper presents WattsApp, a tool underpinned by a six step software-based method for power-aware container scheduling to minimize power cap violations on a server. The proposed method relies on a neural network-based power estimation model and a power capped container scheduling technique. Experimental studies are pursued in a lab-based environment on 10 benchmarks on Intel and ARM processors. The results highlight that power estimation has negligible overheads - nearly 90% of all data samples can be estimated with less than a 10% error, and the Mean Absolute Percentage Error (MAPE) is less than 6%. The power-aware scheduling of WattsApp is more effective than Intel’s Running Power Average Limit (RAPL) based power capping as it does not degrade the performance of all running containers.