
Wireless Sensor Network Simulation with Xen
Paul Harvey and Joseph Sventek

School of Computing Science
University of Glasgow

Glasgow, G12 8QQ
p.harvey.1@research.gla.ac.uk and joseph.sventek@glasgow.ac.uk

Keywords: Xen, wireless sensor network, TinyOS, Contiki,
InceOS

Abstract
The large-scale and inaccessibility of deployed wireless sen-
sor networks mandate that the code installed in sensor nodes
be rigorously tested prior to deployment. Such testing is pri-
marily done using software simulators. Discrete event simu-
lators, by their very nature, mask race conditions in the code
since simulated interrupts never interrupt running code; an
additional limitation of most such simulators is that all sim-
ulated nodes execute the same application code, at variance
with common practice in actual deployments. Java-based
simulators often suffer from efficiency issues, which limits
the scale and performance of the simulation. Since all of these
problems reduce confidence in the deployed system, the focus
of this work is to eliminate these problems via complete em-
ulation of wireless sensor networks using virtualisation tech-
niques in a scalable manner. This work describes the virtu-
alisation of the Contiki, TinyOS, and InceOS wireless sen-
sor network operating systems to execute as guest domains
over the Xen hypervisor. In each case, the hardware virtual-
isation is performed at the lowest possible layer, maximis-
ing the amount of OS and application code which is executed
during the emulation. This work also introduces a novel Xen-
specific radio model mechanism, easing the introduction of
different radio models for use during emulations.

1. INTRODUCTION
Wireless Sensor Networks (WSNs) are a collection of

low cost, resource-constrained, battery-powered sensor motes
which interact via radio communication; each sensor node
will typically measure or effect a change in its surrounding
environment, and communicates with other nodes to facilitate
the transfer of measurements or control information to/from
a control point. Due to the short range of these radios, most
nodes will also act as routers in the network.

Such networks are usually widely distributed, often in in-
accessible places [6]. Such inaccessibility of deployed WSNs
makes it difficult (or impossible if the nodes are installed in an
area hazardous to humans) to access the nodes in situ, mak-
ing it essential that the nodes be rigorously tested prior to their
deployment.

One approach to WSN testing is to use a testbed. A testbed
is a deployment of motes in a controlled environment, where
each mote runs the actual code to be deployed. The resource-
constrained and embedded nature of sensor nodes means that
they lack detailed output capabilities, thus making the collec-
tion of debugging information difficult. The SenseLab project
[11] attempts to mitigate these issues by offering a generic
testbed of 1000 nodes deployed across four seperate regions
of France. While this enables the collection of accurate de-
bugging information, it does not take into account the envi-
ronmental conditions of a specific deployment. This includes
deployments which require more than 1000 nodes, or field
conditions which may affect the inter-node radio communica-
tion. As a result of these issues, testbeds are usually difficult
to setup and collect information from, and unlikely to give an
accurate representation of the actual deployment.

To overcome these difficulties, sensor network testing is
typically done using software simulation [4, 8, 15]. By simu-
lating all nodes within a single running program on a com-
modity PC, simulators overcome the lack of detailed out-
put capabilities, or the single radio medium available in a
hardware testbed. With a sufficiently precise model of ra-
dio communications, simulators are able to model the geo-
graphical spread of large-scale networks, and to emulate ad-
verse/challenging field conditions.

Discrete event simulation is the most common approach
used to simulate WSNs. By its very nature, discrete event
simulation models the activity of network nodes and the soft-
ware components on those nodes as discrete events in time.

Due to this event-driven approach, an interrupt which can
cause incorrect behaviour in a physical node will not cause
the same error in simulation. This situation limits discrete-
event simulation as a reliable tool to provide strong guaran-
tees about the suitability of software for deployment in the
field. For example, an interrupt may modify a variable while
normally executing code was in the middle of reading the
variable. For the same reason, any code that performs an in-
finite loop awaiting an interrupt will never terminate in the
simulator. This is the primary limitation that this work is in-
tended to overcome.

Simulators implemented in Java often suffer from effi-
ciency issues [14]. Consequently, as a simulation scales, the
performance and usability of the simulation decreases, limit-

mailto:p.harvey.1@research.gla.ac.uk
mailto:joseph.sventek@glasgow.ac.uk


ing the ability to simulate large WSN deployments.
An alternative to software testing is the ability to dynam-

ically re-program deployed sensor nodes at runtime. While
over-the-air programming is a more dynamic approach than
simulation, it requires software to be present on the resource
constrained motes to enable updates, and power to be con-
sumed on the motes in the network who route the update com-
mands and data to their destination.

The remainder of this paper is organised as follows: Sec-
tion 2. discusses existing WSN simulators, Section 3. de-
scribes Xen, Sections 4. and 5. describe how Xen is used as
a simulation platform, including node emulation, communi-
cation and placement. Section 6. describes the performance
of Xen as a WSN simulator, and Section 7. discusses future
work, and summarises the findings of the work.

2. SIMULATION ENVIRONMENTS
There are many different simulators used to test WSNs,

the majority of which are discrete event simulators. There
are also trace-driven simulators, however these are less com-
mon because of the lack of standard trace data, due to a lack
of a standard model of a sensor network application. Some
simulators are general purpose simulators which have been
extended to include WSN simulation [13, 2], and others are
purpose-built WSN simulators [15, 10]. The two most promi-
nent purpose-built simulators are TOSSIM [8] and Cooja [9].

TOSSIM is a discreet event simulator designed specifically
to simulate WSNs with each node in the network running an
application of TinyOS [7]. TOSSIM is integrated directly into
the TinyOS build tree, such that a user may invoke make
sim to compile a TinyOS application to work with TOSSIM.
At compile-time, certain TinyOS components are replaced
with simulation implementations. Users may also view the
simulation via a GUI known as TinyVIZ.

There are three main drawbacks to TOSSIM. Firstly, as
TOSSIM models all interrupts as events, it does not model
pre-emption and the resulting potential data-races that may
occur. Consequently, it does not give a completely accu-
rate representation of the deployed system, reducing confi-
dence that the deployed system will work correctly. Secondly,
TOSSIM can only support applications running on TinyOS.
Finally, each mote in a given simulation must execute identi-
cal source code.

Cooja is a Java-based network simulator, and is a hard-
ware emulator when combined with MSPSim [4]. MSPSim
is also a discrete-event simulator, however by simulating at
the hardware instruction level, it offers the same guarantees
as real hardware. Cooja has three primary simulation options.
It can perform application-level and OS-level simulation of
Contiki code. Additionally, it can perform simulations which
simultaneously include emulation of WSN platform binaries,
and simulation of application code. Cooja has a versatile and

complete user interface that enables many aspects of the sim-
ulation to be examined and probed. The main disadvantage of
the simulator is that it is inefficient at scale. Given the setup
described in Section 6., a simulation involving 1000 emulated
nodes requires 3 hours to yield 34 seconds of emulation. In
general, large-scale emulations are heap limited, as an em-
ulation of 1000 nodes with 5 GB of heap space eventually
failed.

3. XEN
Xen [1] is a virtual machine monitor (hypervisor) which

enables multiple operating system (OS) instances to run si-
multaneously on a single machine. Each OS instance is
known as a domain. Xen regulates access to the physical re-
sources between the domains, and ensures that domains are
appropriately isolated from each other - e.g. a domain may
not access the memory of another.

3.1. Paravirtualisation
Full virtualization provides complete emulation of the

hardware, including privileged instructions; thus, a guest op-
erating system instance is unaware that any abstraction from
the hardware is occurring. Xen uses paravirtualization, in
which Xen exports its own set of hardware abstractions, and
the source code for each guest operating system must be mod-
ified to interact with those abstractions. Porting an OS to Xen
is similar to porting to a new hardware platform.

The hypervisor provides a software ABI (the hypercalls)
which replaces manipulation of the actual hardware; this in-
cludes, for example, privileged instructions such as updating
page tables and requesting access to hardware resources. Al-
though this requires development time to be spent in porting
to the hypervisor, the technique yields considerable increases
in performance over full virtualization [1]. It should be noted
that only the OS kernel requires modification, and that user
applications remain unchanged.

3.2. Domain Management
A single, specially privileged domain (Dom0) is the first

domain that the hypervisor loads when booting; this is typ-
ically a modified Linux kernel. This domain has access to
available hardware such as hard disks and network interfaces.
Other domains (termed DomU or guest domains) typically do
not have direct access to these resources and must request ac-
cess via Dom0; this distinction is transparent to all but the
lowest layers of the guest operating system.

Dom0 privileges include the ability to create and destroy
domains. This is typically achieved by executing the relevant
xm subcommand, providing configuration parameters in a file
or from the command line. For example, xm create re-
quires the new domain’s name, memory allocation, and the



virtual network bridge to which its virtual network card will
be connected.

3.3. Split Drivers
As guest domains typically do not have access to the phys-

ical hardware, their device drivers are replaced with a split
driver implementation. The backend portion of the driver
resides in Dom0 and accesses the hardware resource. The
matching frontend in a DomU communicates with the back-
end to obtain the relevant service; it is for this reason that the
guest OS’s drivers must be modified.

4. XEN AS A SIMULATOR
To explore the efficacy of Xen as a platform for supporting

WSN simulation, the TinyOS [7], Contiki [3], and InceOS [5]
WSN operating systems have been ported to run on the Xen
platform as guest domains. These OSs were chosen as they
represent the different equivalence classes present in WSNs:
event-based, protothread-based, and actor-based.

As with other guest OSs, it was necessary to port all of
these systems to use the Xen hypercalls instead of directly
manipulating the hardware of motes. When porting these sys-
tems to Xen there were two goals:

1. Modifications to the OS should be done at the lowest
possible level, so as to ensure that as much of the OS and
application code as possible is used in the simulation.

2. Any changes should be integrated into the build process
of the system, such that building for Xen is no more dif-
ficult than any other platform.

4.1. Mini-OS
The Xen hypervisor is delivered with an OS called Mini-

OS. Mini-OS is designed to serve as a reference OS for those
wishing to port their own OSs to run as Xen domains. It
shows how a domain can achieve memory allocation, net-
working, concurrency, timing, backing storage, and how to
interact with the XenStore, which will be discussed later.

Within this work, Mini-OS was used as more than just a
reference OS. Instead, Mini-OS was used as the base OS for
the domain, and the relevant WSN OS is run as a thread on-
top of Mini-OS. No excess processing is required as, after
Mini-OS is initialised, the WSN OS thread is the only active
thread in the domain.

Using Mini-OS simplified the process of porting each OS
to Xen, as the low level implementation of interacting with
Xen is already provided. In this way Mini-OS aided in the un-
derstanding of how to use the hypercalls, as well as reducing
the development time required in porting the systems. Figure
1 shows the architecture of the Xen simulation environment.

Figure 1. The Architecture of the Xen WSN Simulator

In order to produce an image to be instantiated as a guest
domain, three steps were required to combine the WSN OS
and application with Mini-OS:

1. Each OS was built for the Xen platform. Normally
TinyOS generates a single .c file which is then com-
piled to the relevant binary, whereas InceOS and Contiki
generates multiple object files which are linked together
before generating the relevant binary. In each case the
binary generation phase is skipped.

2. For all systems, the main() function was renamed to
app main() before generating an object file to be
linked against Mini-OS. app main() is the function
called by Mini-OS after it has completed initialisation.

3. The object files are linked with Mini-OS to create a Xen
domain image.

4.2. Xen-Timers
Each OS requires the use of timers for different activities,

and each system provides a software interface for request-
ing time-outs at certain intervals. Behind this software API,
the timer module(s) maintain accounting information for the
outstanding timers, and code to interact with the hardware to
request, and be notified of the expiration of a timeout.

Xen does not permit access directly to the underlying hard-
ware for guest domains. Instead, Xen provides a set of hyper-
calls to mediate access to the hardware. Specifically for time-
outs, Xen provides the set timer op(timeout) hyper-
call, which causes a virtual timer interrupt to be delivered af-
ter timeout nanoseconds. Each domain may only have one
outstanding timer request at any one time, therefore any new
timer request will replace the outstanding one.

Mote hardware, such as the MSP430, or Atmel micropro-
cessor, will usually have a number of timers which will run
at (configurable) rates. Given that Xen only permits a sin-
gle timer to be outstanding at any one time, the XenTimer



Figure 2. Xen Simulator Networking Layout

driver was introduced to merge the requests from multiple
timers into a single request queue.

4.3. Xen-Radio
On real mote platforms, the radio is used to facilitate inter-

node communication through the surrounding medium. Sim-
ilarly to the timers above, a software API is provided to sim-
plify interaction with the underlying hardware. In Xen, do-
mains communicate with each other using virtual interfaces
(vifs). Vifs are virtualised network interface cards, with their
own IP and MAC addresses, thus mimicking real network
interface cards. The network architecture and Java network
model can be seen in Figure 2.

In each OS, it is the responsibility of the radio driver to
abstract the interaction with the radio hardware, such that the
driver is given and returns packet payloads and addresses. For
the Xen simulation platform this is no different.

In order for each system to communicate across Xen, the
XenRadio driver was introduced to each system. It is the re-
sponsibility of this driver to convert to and from the UDP
packets which are sent and received from Xen. UDP packets
are used as they mimic the guarantees present in a WSN net-
work. As a consequence of this, all current and future WSN
domains are interoperable, it is only then necessary to be run-
ning the same network protocols in each OS to transmit and
receive from other domains.

4.4. Xen Simulation Networking
In the field, radio communication between WSN motes ex-

hibit various properties that must be simulated: packet loss,
radio noise, and collisions. Signal power is reduced as the
distance between the nodes increases, often resulting in in-
creased bit-errors and loss.

The goal of this work was to provide a framework in which
various radio models, of different foci/accuracy can be easily
implemented and inserted. Of particular importance was the
desire that network model developers not have to be expert

Figure 3. Dom0 Java Network Application Architecture

programmers; the framework needed to provide clear inter-
faces for accessing the underlying functionality.

The key functionality provided by these interfaces are:

• notification of all incoming frames from the mote

• access to the topology in which the motes are deployed

• the ability to transmit frames to motes (as dictated by the
radio model)

A centralized approach has been adopted, with the net-
work model implementation active on Dom0. When a mote
transmits a packet, it is forwarded to the network model; the
model determines which other motes, if any, should receive
that packet, and then forwards the packet to those motes.

The radio communication emulation uses the vif provided
by Mini-OS. Each 802.15.4 packet is encapsulated into a
UDP packet and relayed to Dom0 via the frontend-backend
communication channel. This is achieved by associating a
unique IP address to each mote identifier and binding it to
the domain’s virtual MAC address by loading the ARP cache.
The radio model running in Dom0 intercepts the packets after
they have been processed by the IP networking stack.

To support the straightforward creation of different net-
work models, the Java framework shown in Figure 3 is pro-
vided. The NetworkModel class is abstract and defines a
constructor which takes as parameters a Topology and a class
which implements the MessageSend interface. The Topol-
ogy class, discussed in the next section, can be used by the
network model to determine distances between nodes.

An example network model implemented in the distri-
bution, PerfectRadioModel, performs simple distance-
based filtering of packets. The bytes of packets are unmodi-
fied (no noise), and packets are relayed if the distance from
the sender is less than a particular bound. While this is clearly
too simplistic for a real simulation, it provides a starting point
for future development of more accurate replacements.



4.5. The XenStore
Each system requires information at boot-time. Some in-

formation is implicit, such as hardware details, and some
is user-specified, such as the unique TOS NODE ID value
which is specified for TinyOS at compile-time.

Xen provides a useful method of transferring start-of-day
information to domains via the XenStore. The XenStore is a
tree-structured database in which each domain has its own
directory. Dom0 can write key-value pairs into any of the do-
mains’ directories, and each guest domain can read/write key-
value pairs into its own directory.

During the boot sequence of each OS, an initialisation
function has been added to to read values from the XenStore.
Values to be read include the TOS NODE ID for TinyOS, and
more generally the IP and MAC address to be used in the
XenRadio.

4.6. Microcontroller Sleep
WSN motes are small battery-powered computers. In order

to preserve power for as long as possible, motes often have a
number of low power states. Each state is responsible for en-
abling or disabling certain hardware elements, such as clocks
and the radio. In each OS, when there is no more work to be
done, the scheduler will place the mote into a sleep mode to
conserve power, rather than having an idle task.

Within the Xen simulation, a domain may also go to
sleep until awoken by an interrupt from the hypervisor. The
block domain(duration) hypercall will block a do-
main from executing until duration nanoseconds have
passed, or an interrupt is received, thus mimicking the opera-
tion of hardware. In each system, duration is set to FOR-
EVER, meaning that the domain will only wake up when a
timer fires, or radio packet is received. This also has the ad-
vantage of releasing CPU cycles for other work in the simu-
lation.

4.7. Debug Output
A benefit of simulators is the ability to print debugging out-

put, and is also a requirement for the Xen simulator. Within
Mini-OS printk() is used to print information to a con-
sole. This (virtual) console can be connected to/from Dom0.

To avoid having to open multiple terminals in Dom0, the
Java control program collects the output from the guest do-
mains and displays them in a single window, Figure 4.

5. TOPOLOGY MANAGEMENT
There are a number of steps required to create a Xen WSN

domain. Firstly, the OS and application must be compiled;
then the Mini-OS Makefile must be modified to include the
object file produced. make is then run in the Mini-OS direc-
tory to create the absolute binary. Finally, this binary is loaded
into a Xen guest domain using the xm command in Dom0.

Figure 4. Debug Output From Running Domains

Also, there are a number of per-domain settings that must
be specified: the domain config file must contain a unique do-
main name, the XenStore must have the new domain’s start-
of-day constants written into it (including the node’s geo-
graphic coordinates), and the arp command must be issued
to bind the IP address for each node to its virtual network
interface.

The topology of a sensor network is specified in a topology
file. Each line of the file contains information for one node in
the system as follows:

• node ID

• latitude (+/-,degrees minutes, seconds)

• longitude (+/-, degrees minutes, seconds)

• altitude (meters)

• node application

Note that we have chosen latitude, longitude and altitude
as node coordinates to support realistic deployments scenar-
ios. Field deployment of motes is usually driven by knowl-
edge of the terrain and the locations of special interest for
sensors; these coordinates are determined using hand-held
GPS (Global Positioning System) devices. This leads to a
direct mapping between testing and deployment configura-
tions, providing additional assurance that the nodes will oper-
ate as expected when deployed. This differs from TOSSIM in
which the topologies are defined in terms of radio gain (signal
strength) between pairs of nodes.

In order to address the above-mentioned complexities, as
well as to provide coordinate information for use by network
model implementations, a control program, written in Java, is
supplied with the system. This control program:

• parses a topology file, constructing an instance of the
Topology class

• instantiates the network model using that Topology class
instance



Figure 5. Cumulative Domain Creation and Initialisation
Times over 1000 Nodes

• for each entry in the file, creates a guest domain running
the application and pauses the guest domain

• after the last domain has been created, the domains are
resumed in rapid succession

When a simulation is in progress, it is possible to ma-
nipulate the topology in various ways. Nodes can be added
and deleted. Additionally, if supported by the network model,
nodes may be moved to new coordinates.

6. EVALUATION
In this section we categorise the costs and limitations of

the Xen simulation technique. The two main questions are
how many nodes can we simulate, and what is the perfor-
mance degradation in the simulation as the number of nodes
increase?

6.1. Experimental Setup
All tests were carried out using Xen 4.1.2. Dom0 was a

64-bit version of Ubuntu 12.04 with Linux 3.2.0-33-generic.
All testes were carried out on an Intel Core i5 3550 quad-core
processor running at 3.33 GHz, with 12 GB of RAM.

Dom0 is initially able to execute on any of the CPUs in
the system, however, after all the nodes of a simulation have
been created, it is pinned to execute on a single CPU before
unpausing the nodes. Each guest domain is able to run on any
CPU except the one which is allocated for Dom0. This is done
to ensure that one CPU will always be available to service
Dom0, and by extension, the network traffic. This also pre-
vents scheduling anomalies which would have been caused
by scheduling competition between small sensor DomUs and
Dom0. The Xen credit-scheduler was used, with all domains
receiving the default weight.

6.2. Memory Consumption
Within Xen, the minimum amount of memory which can

be allocated to a domain is 4MB, which is approximately

Figure 6. Cumulative Domain Destruction Times over 1000
Nodes

two orders of magnitude greater than the RAM available on a
typical mote. This is irrespective of the WSN OS being used
within the domain. This limit is enforced by Xen due to 4MB
alignment of the memory allocation. The Xen balloon driver
enables domains to be given more RAM if they require it and
if enough RAM is available. This feature was disabled during
testing. In addition to the RAM allocated when a DomU is
created, experiments show that Xen itself requires a further
0.14 MB per domain.

In contrast to the DomU’s, Dom0 was specified to have a
fixed memory of 3 GB during testing. Given these values, the
theoretical maximum number of WSN OS domains that could
be created is 2226.

6.3. Performance
In order to categorise the performance of the simulator, the

times required to perform different actions were measured.

6.3.1. Startup Delay
When setting up a simulation, each domain is compiled as

described previously, created, and executed. Figure 5 shows
the cumulative amount of time for one thousand domains to
be created and setup under Xen. In total this requires 56.9
minutes to setup a simulation involving 1000 nodes.

The first domain requires 0.7s to create, and the cost grows
quadratically. These values are independent of the domain to
be run, and are due to Xen itself. After consultation with the
Xen developers, it is not clear why the time required to cre-
ate a domain grows quadratically. In contrast to the creation
times, Figure 6 shows the cumulative amount of time to de-
stroy one thousand domains. In total this took 11.1 minutes,
with the longest destruction taking 1.5s.

While the creation time is large, there are two important
points to consider. Firstly, each simulated node is an isolated
Xen domain, which is fully interruptible at any point and
contains its own networking interface. Secondly, the creation
time is a one-off start up cost, which has no bearing on the
simulation time.



Figure 7. Single Node Throughput

6.3.2. Scalability
To assess how the simulator copes under scale, three exper-

iments were carried out. The first was to assess the throughput
of each domain, the second was to assess the delay on timer
interrupts, and the third was to determine the round trip time
between two nodes sending packets.

In the first case, each simulated node repeatedly calcu-
lates the integer fast Fourier transform (ifft) of a 1 KB array
of numbers. In the second, two applications were used, one
which calculates the ifft, and one which simply reads from
a sensor and sleeps periodically. In the third, the round trip
time (RTT) between a single pair of nodes is measured, with
every pair of simulated nodes sending packets to each other
via the network model in Dom0. This simulation used the
PerfectRadioModel. The ifft calculation represents the
worst-case situation for the simulator, when nodes never go to
sleep. In each graph, the time was taken after all nodes were
unpaused so as to observe the greatest load on the simulator.

Figure 7 shows the average time required to perform 1000
iterations of the ifft as the number of simulated nodes in-
crease. The results show that the throughput scales approx-
imately linearly with the number of nodes divided by three.
This is due to the execution of guest domains across three
CPUs. For each simulation run, core 3 is reserved for Dom0,
with each DomU being allocated amongst the remaining three
cores in a round-robin fashion.

There is currently a bug within a particular Xen daemon,
which occurs when more than 338 WSN DomUs are created,
and prevents connection to the console of any subsequently
created domain. The cause of this problem is a statically al-
located array of open file handles. The Xen developers have
been notified, and a patch is under way. This limitation does
not prevent the creation or operation of subsequent domains.

Figure 8 shows the delay in µs observed on timer requests
made to Xen as the number of nodes grow for both a CPU
intensive and non-intensive application. In general, the CPU
intensive application has a lower delay when there are fewer
nodes, but scales super-linearly. In contrast, the CPU light
application performs worse at low number of domains, but
scales sub-linearly. This is due to the CPU light domains go-

Figure 8. Delay on Requested Timer Interrupt

Figure 9. Single Hop Packet Round Trip Time

ing to sleep, since approximately 3ms are required to wakeup
the domain. However, with larger numbers of domains, the
CPU light applications consume very few cycles, leaving
plenty of time for Xen to manage timer requests. The CPU
intensive applications do not give up cycles, hence the poor
performance at scale. The CPU light application more accu-
rately represents typical WSN behaviour.

As a point of comparison, a Cooja simulation of 1000
nodes performing a similar CPU light application without
networking took 3 hrs to generate 34s of emulation, includ-
ing the almost instantaneous the start-up time. The Xen sim-
ulation, using the CPU intensive application, took 3.3 hrs to
generate 34s of emulation, including start-up time. Focusing
on emulation time alone, the Xen simulator produces faster
per second emulation at scale.

Finally, Figure 9 shows the single hop RTT between a pair
of simulated nodes as the total number of nodes increase, av-
eraged over 100 packets. The figure shows that the RTT scales
sub-linearly as the number of nodes increases, even account-
ing for the standard deviation, shown by the error bars. This
is caused by a combination of Dom0 being allocated a dedi-
cated CPU, as well as the radio model being relatively simple.
The next step would be to re-run this experiment with a more
complicated radio model.

7. SUMMARY AND FUTURE WORK
This paper presents a Xen-based wireless sensor network

simulator, upon which real sensor network components op-
erate. This occurs in real-time with the same behaviour as



running on actual hardware. In particular, race conditions are
able to manifest themselves, heterogeneous sensor networks
can be emulated, and a framework supporting different ra-
dio models has been provided to enable realistic radio trans-
missions for use in simulations. The results show that while
there is a high cost in creating large simulations, Xen copes
well during emulation with large numbers of simulated nodes,
scaling linearly, thus enabling the emulation of large scale
sensor fields. Three WSN OSs have been ported to the plat-
form, and a wide variety of their applications have been tested
using a perfect radio model, and work correctly.

Given the Xen results for domain creation and timer delay
under load, it is worth exploring alternative solutions. Con-
sequently, the next step is to explore process level emulation,
as a process offers similar isolation guarantees as a domain.
Cgroups [12] enables the fine grained control of a process’s
resources, while maintaining the isolation of the process.

REFERENCES
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,

Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the nineteenth ACM symposium on Op-
erating systems principles, SOSP ’03, pages 164–177,
New York, NY, USA, 2003. ACM.

[2] OMNeT++ Community. Omnet++ discrete event simu-
lator. Online, October 2012. http://www.omnetpp.org.

[3] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt.
Contiki - a lightweight and flexible operating system for
tiny networked sensors. In Proceedings of the 29th An-
nual IEEE International Conference on Local Computer
Networks, LCN ’04, pages 455–462, Washington, DC,
USA, 2004. IEEE Computer Society. Contiki OS.

[4] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nico-
las Tsiftes, Adam Dunkels, Thiemo Voigt, Robert
Sauter, and Pedro José Marrón. Cooja/mspsim: inter-
operability testing for wireless sensor networks. In Pro-
ceedings of the 2nd International Conference on Simu-
lation Tools and Techniques, Simutools ’09, pages 27:1–
27:7, ICST, Brussels, Belgium, Belgium, 2009. ICST
(Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[5] Paul Harvey, Alan Dearle, Jonathan Lewis, and
Joseph S. Sventek. Channel and active component ab-
stractions for wsn programming - a language model
with operating system support. In Proceedings of the
1st International Conference on Sensor Networks, pages
35–44, 2012.

[6] Andreas Hasler, Igor Talzi, Christian Tschudin, and
Stephan Gruber. Wireless sensor networks in permafrost
research - concept, requirements, implementation and
challenges. In Proc. 9th International Conf. on Per-
mafrost (NICOP 2008, 2008.

[7] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, and Kristofer Pister. System architecture
directions for networked sensors. SIGOPS Oper. Syst.
Rev., 34(5):93–104, 2000.

[8] Philip Levis, Nelson Lee, Matt Welsh, and David
Culler. Tossim: accurate and scalable simulation of en-
tire tinyos applications. In Proceedings of the 1st in-
ternational conference on Embedded networked sensor
systems, SenSys ’03, pages 126–137, New York, NY,
USA, 2003. ACM.

[9] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level sensor network simulation with
cooja. Local Computer Networks, Annual IEEE Con-
ference on, 0:641–648, 2006.

[10] Jonathan Polley, Dionysys Blazakis, Jonathan Mcgee,
Dan Rusk, and John S. Baras. Atemu: A fine-grained
sensor network simulator. In IEEE Communications
Society Conference on Sensor and Ad Hoc Communi-
cations and Networks, 2004.

[11] SenseLab. Senselab: Very large scale open wire-
less sensor network testsbed, November 2012.
http://www.senselab.info.

[12] Balbir Singh and Vaidyanathan Srinivasan. Containers:
Challenges with the memory resource controller and its
performance. In Proceedings of the Linux Symposium,
pages 101–110, Ottawa, Canada, June 2007.

[13] Clay Stevens, Colin Lyons, Ronny Hendrych, Ri-
cardo Simon Carbajo, Meriel Huggard, and Ciaran Mc
Goldrick. Simulating mobility in wsns: Bridging the
gap between ns-2 and tossim 2.x. In Proceedings of
the 2009 13th IEEE/ACM International Symposium on
Distributed Simulation and Real Time Applications, DS-
RT ’09, pages 247–250, Washington, DC, USA, 2009.
IEEE Computer Society.

[14] Harsh Sundani, Haoyue Li, Vijay K. Devabhaktuni,
Mansoor Alam, and Prabir Bhattacharya. Wireless sen-
sor network simulators a survey and comparisons. Inter-
national Journal Of Computer Networks (IJCN), 2(5),
2010.

[15] Hejun Wu, Qiong Luo, Pei Zheng, and Lionel M.
Ni. Vmnet: Realistic emulation of wireless sensor net-
works. IEEE Trans. Parallel Distrib. Syst., 18(2):277–
288, February 2007.


	Introduction
	Simulation Environments
	Xen
	Paravirtualisation
	Domain Management
	Split Drivers

	Xen as a Simulator
	Mini-OS
	Xen-Timers
	Xen-Radio
	Xen Simulation Networking
	The XenStore
	Microcontroller Sleep
	Debug Output

	Topology Management
	Evaluation
	Experimental Setup
	Memory Consumption
	Performance
	Startup Delay
	Scalability


	Summary and Future Work

